Random perturbations of 2-dimensional hamiltonian flows

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Perturbations of 2-dimensional Hamiltonian Flows

We consider the motion of a particle in a periodic two dimensional flow perturbed by small (molecular) diffusion. The flow is generated by a divergence free zero mean vector field. The long time behavior corresponds to the behavior of the homogenized process that is diffusion process with the constant diffusion matrix (effective diffusivity). We obtain the asymptotics of the effective diffusivi...

متن کامل

Flows, Random Perturbations and Rate of Mixing

A new approach to the study of the rate of mixing in Anosov flows, recently proposed by N. Chernov, is simplified and generalized to the higher dimensional case. CONTENT 0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 2 1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Singular Perturbations of Finite Dimensional Gradient Flows

In this paper we give a description of the asymptotic behavior, as ε → 0, of the ε-gradient flow in the finite dimensional case. Under very general assumptions we prove that it converges to an evolution obtained by connecting some smooth branches of solutions to the equilibrium equation (slow dynamics) through some heteroclinic solutions of the gradient flow (fast dynamics).

متن کامل

Institute for Mathematical Physics Flows, Random Perturbations and Rate of Mixing Flows, Random Perturbations and Rate of Mixing

A new approach to the study of the rate of mixing in Anosov ows, recently proposed by N. Chernov, is simpliied and generalized to the higher dimensional case.

متن کامل

Approximating multi-dimensional Hamiltonian flows by billiards

The behavior of a point particle traveling with a constant speed in a region D ∈ RN , undergoing elastic collisions at the regions’s boundary, is known as the billiard problem. Various billiard models serve as approximation to the classical and semi-classical motion in systems with steep potentials (e.g. for studying classical molecular dynamics, cold atom’s motion in dark optical traps and mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2004

ISSN: 0178-8051,1432-2064

DOI: 10.1007/s00440-003-0320-0